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Abstract—The solution of viscoplastic buckling of a complete thin spherical shell subjected to
impulse pressure is given. The nonlinear flow law is assumed and the influence of clevated
temperature on the magnitude of displacements, buckling mode and threshold impulse is discussed.
The special cases of bucking modes arc also considered. The numerical results arc presented
diagrammatically for a stee shell loaded by a radial impulse.

1. INTRODUCTION

The problem of dynamic inelastic buckling of shells has been investigated in many papers.
The solutions for a spherical shell made of an elastic—plastic and rigid-plastic material with
linear hardening are given by Jones and Ahn[l, 2]. More attention was devoted to obtain
solutions for a cylindrical shell: Abrahamson and Goodier[3], Lindberg[4], Anderson and
Lindberg[5], Vaughan and Florence[6] and others. All those solutions concern shells made
of strain-rate insensitive material.

The viscosity effects of the material are taken into account in the papers by Perrone[7],
Florence[8], Florence and Abrahamson[9], Wojewodzki[10, 11] in which the cylindrical
shell was considered and only a radial component of the displacement was accounted for.
Wojewodzki and Lewinski[l2] considered an axisymmetrical. buckling of a complete
spherical shell and investigated the influence of the meridional displacement on the
magnitude of radial displacement, buckling mode and critical impulse. In these solutions
a linear law of viscoplastic flow was used.

The present paper aims at solving the problem of a general buckling mode of a
complete thin spherical shell loaded uniformly by an impulse pressure. The nonlinear law
of viscoplastic flow will be assumed and the influence of elevated temperature will also be
shown.

2. BASIC EQUATIONS

The constitutive equations. The influence of work hardening, strain rate and tem-
perature on the material response can be described by the following equations formulated
by Perzyna and Wierzbicki[13, 14):

. _16) S oo H” _[®(F) for F>0
63——2—<¢(n>.721%sF"’m"]9<¢(F)>—{0 for F<0, (21)

where ¢ is the strain rate tensor (dots indicate time differentiation), J, =4 s;s; denotes the
second invariant of the stress deviator s, i,j = 1,2, 3, k() = 0,(0)/3'?, 6,(0) is the static
yield stress, y (f) is the viscosity coefficient of the material and & stands for the temperature.
The nonlinear low @ (F)= F? will be assumed where F denotes the static yield function
and & is a material constant. The elastic strains are omitted and the material is
incompressible, &; = /3K + af= 0, where K is the modulus of volume expansion and «
denotes the coefficient of thermal expansions. Experimental results confirmed a suitability
description of the metals behaviour with only two quantities k and y dependent on the
temperature and @ itself independent of it, see [14]. The physical equations of the Saint
Venant-Levy-Mises theory of plastic flow, ¢, = As;, are obtained from (2.1) if y = o0 and
J,'® = k. The functions k(f) and y(f) for mild steel, established on the basis of
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experimental results by Maiden and Campbell{15] and Manjoine[16] have the form (6 = 5)

k(@) = 119.51 exp [o 45 (—28- - 1)] [MPa),

y(f) = 60.24 [1 +2.6 (2 ;_)7; g)z] [s~] 2.2)

where the temperature @ is expressed in [K].

The shell operates at constant temperature and no constrains are imposed on the
deformation. This results in no arising the stresses due to the coefficient of thermal
expansion of the material. The applied impulse is regarded to be an accidental one.

The kinematic equations. According to the Kirchhoff-Love hypothesis the components
of the strain rate tensor are, [17], Fig. 1:

ou z (6% 0ou
) 503)

1/ 1 0 Z 1 8w 1 dv
3 £
%= (snn¢6¢ tuctgd - w) (sm’¢692+sn¢68+ tg¢a¢+ucg¢)
2.3)

a0 1 du 2d )~ z 1 0% cos¢dw
€o0= o = 2,, % Tsmoas ¢ 2\sing 0908 s ¢ 00

+sde o (v + 1 r_?g
2 d¢\sing/ 2sinpadd;
The dynamic equilibrium equations. The following equations are employed[i8],
Fig. 1.

8N - - - - .
a cos $N, + a sin ¢ “ ~ F\Ny — PN+ §:Q¢ + P:Qp + a* sin ¢P, = 0,

3¢

ON, aN .
acos ¢N“+a 51n¢ b +a =f +0"1N¢+r2N“ q;Qg PlQ""a: Sln¢P330,

o¢

20, , 42

Fy: —~§ Ny — P:Ngy + P1Ngg + GalNo + a* sin ¢ P, = 0,

a cos $Q, + a sin ¢ —=

oM, oM, . . .
acos pMy+asin ¢ ——-5-;‘5 - a—-é-ég — My~ FyMys + a*sin $Qy =0,

oM, oM . .
acos¢M¢+asm¢-—é-$3+ “ + #, My — My — a’sin ¢Q, = 0,

ﬁlM¢+ﬁ1Mg-—i]',M“+q'2M“+azsin¢(N“-—N“)==0 (2.4)

Fig. 1. Shell element, sign convention.
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where

. 0w
Pr= 5400

Pa=— :o(g¢+u)+ctg¢< +vsm¢) sm¢a¢
ow
q——s1n¢[a+a¢(a¢ )]
of 1 @
q,-asm¢+ae(sm¢a:+ )+cos¢(a¢ ) 2.5
I oW ow
r,—sxn¢(w+v>+%,

o ow
r,-—acos¢+a¢ae sm¢(5$+u),

P,=q,—phii, Py=gqy— phv, P,=gq,—phW, (2:6)

—ctg ¢

p is the density of the material and & denotes the thickness.
The internal resultant forces and moments are defined as follows:

" Nu=| " opdz
Ng = f_m o'fdz, Nyy= Ny = J—m Oge A2,
) 2
M’ = J:Hz O"Z dz, M“= —M~= —I-hﬂ OgsZ dz. (27)

3. METHOD OF SOLUTION

Assuming g3, = 0, é,; = é;3 =0, according to the Kirchhoff-Love theory of shells, we
get from (2.1), for J,'? > k, the following nonlinear equations:

0oy = A€+ €,,0.p), o fp=1,2 3.1)
where
k 2., 2 LY 1. . .
A= 75—,2 1+ ;12 , L= 3 (€ap + €,900p)E0s- (3.2a,b)

1, is the second invariant of the strain rate deviator and §,, denotes the Kronecker delta.
The loading criterion J,"2 > k is equivalent to ,> 0.

In order to obtain the internal resultant forces and moments (2.7), the yield rules should
be transformed into the space of forces and moments. Using eqns (2.7) and (3.1), we obtain
the integrals of irrational expressions which cannot be shown in the explicit form. Thus,
other way of solution will be sought.

A characteristic feature of dynamic buckling is the significance of inertial effects in
restraining the growth of buckling mode amplitudes at an early stage of the motion. These
effects result in the yielding before the instabilities become dominant. Analytically, the
problem can be formulated as a superposition of small perturbations u,(¢, 6, 1), v,(¢, 6, 1),
w,(#, 8, t) on the basic unperturbed motion u, = v, = 0, w,(¢). The amplitudes of perturbed
displacements are restricted to be so small that the homogeneous compressive deformation
predominates over local bending. Also, this condition permits the constitutive equations
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tq be linearized by the expansion of eqns (3.1) into Taylor’s series in three variables in the
vicinity of unperturbed motion and by retaining two terms only. We obtain:

Oup = Ao(éaﬂ + éppéaﬂ) + Bo[(ng + égpéqw)(éqw - 6?]0))] (égﬂ + ézuéuﬁ) (333)

where
k 2 =)\ k . 1-6/2 =\
A°=——,0[1+(—,/12° , B'=—(07" —14+— - VI , (3.3b)
N/A Y 2 o \y
0 1. . X
=5 €+ €ubp)ély, o Br...=1.2. (3.3c)

The eqns (3.3a) can be rewritten in the form

Gus= 0%+ 0% (3.3d)
where
Oap = A%(€ES + €5,009), (3.3¢)
0% = A%(€%5 + €2,0,5) + BO[(€2, + €2,0,,)€2,)(€% + €3,8,5), (3.3
bup = €3+ €1y, (3.3g)

The indices 0 and p denote the unperturbed and perturbed quantities, respectively.
Equations (3.3) may now be used together with eqns (2.3), (2.4) and (2.7) to obtain the
differential equations governing the viscoplastic flow buckling of the shell.

Buckling stems from the growth of small imperfections in the otherwise uniform
displacement and loading ficlds. It turns out that certain harmonics grow rapidly and cause
the shell to exhibit a characteristic wrinkled shape which is characterized by critical mode
numbers. This property of the amplitudes is used to determine the threshold impulse that
the shell can tolerate without excessive deformation.

4, UNPERTURBED MOTION
The displacements are expressed by the functions

uy=0, v9=0, wo=wp(t). (4.1)
Substituting (4.1) into (2.3) leads to the components

. i
€'¢° = 690 = "“;0, 5“ = €o¢ =0 (4‘2)

and hence by eqns (3.3e) and (2.7) the following formulae are obtained

ol=0=-3 %0 Wo, 0% =00=0, 4.3)
NO=NQ=—3Co,  No=N%=0, MS=Mi=0 4.4)

where

: i/é
Co=l o=t [1+(2 3"’°) ] 4.5)
a” [ va
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In such a situation eqns (2.4) reduce to the equation
NS+ NS +aP’=0, = g,%(t) — phWy 4.6)
which, combined with the expressions (4.4), yields

Wo + o' = a 4.7)

=’5(}.)"“(2£)‘”“’"‘, . ( _4f3 kh) “8)
p\? a ph

This nonlinear equation for the given initial conditions has a closed form solution, but for
& # 1 it is impossible to find an explicit form. Here, the parametric form will be presented
for two types of the impulse.

In the case of rectangular impulse pressure ¢ =Q for0< s < Tand ¢ =0for 1> T,
T is the duration time of the load and for the initial conditions wy(0) = 0, wy(0) = 0 the
solution of eqn (4.7) can be given in the following parametric form

dw3(e)
dr

where

wi(8) = wy(t(£)),

=¢¢ 4.9
where #(£) is obtained from eqn (4.7)
”5 4 éé i 6 1fé~1 §wi ¢
ot [ ) om0
0<é<ale, t20, 4.10)

and wi(¢) from (4.9) and (4.10),

o gu ~1 _ 5“3-! -1 1 ¢ Wi ¢
0= |- L am(e) (-5 e

The solution (4.11) is valid for 0 <t < Tor 0 < £ < & where t(¢7) =
For ¢ > T it appears convenient to express the eqn (4.7) in the form

k
Wot W= —B, B= 2\5 (4.12)

and to introduce a new parameter {,

dWo(C)

wi(l) = wo(t({)), =(={) 4.13)

From the continuity condition it results that {r= —¢{; and the solution is of the form

5 { Cé-l
B o («':Iﬂ

8%V (5=1 | §-i §—i -
-—(—-1)"‘g {;m[(ﬁc) -(-%c,) ]+1n-}-1—;§—z%}+r, (4.14)

{r<{ <P,

O=(-1""2 d+T
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5 4 2 ~-1
WO =0 | T d s

5 ]5ﬂu 1 (251 1 c \¥-i c Ui C/ﬂ
=(=1) {.;1 26__1.[(§C> —<"'E§r> :|+1n—_——1+f /ﬂ}+wo(T)
(4.15)

where in (4.14), (4.15) T = t(&y), wo(T) = w§(&;) are given in the parametric form by the
solutions (4.10), (4.11). Refining the variation range of {, we have —¢,<{ <0. The
unperturbed motion ceases at the instant ¢ = t,, ({;=0), when wy(¢) = 0. Thus

= (— 1! : '[";‘ (—%{T)é-i-}-ln(l‘i—%fr):]-f-T 4.16)

and the final displacements are

-1 28 -i
LT (e e

im}

For the linear case (6 = 1), the solution of eqn (4.7) can be expressed in the explicit
form{12]. From eqns (4.10), (4.11) we obtain for 0 < T

£(1) =§ (1—e),

w(t) = —% E (1—e) - t]. 4.18)

From eqns (4.14)-(4.16) we get for T<t <

C(r)=§{ [+ (1- "’]““ }

wo(t)=-f;2(l —ct— +8 [T+ (1-e0) e"“J 4.19)

tf=%ln|: a-;ﬂ —e° ]

In the case of an ideal impulse pressure (uniform initial velocity ¥;) the initial
conditions are

wo(0) =0, wo(0) =V,

and the solution of eqn (4.12) has the form

§=1 8- i . $—i I_C /ﬂ
mer g () () et

6 261 (28—-1 1 2~ ) 2
o B8 [ ()

1—{c/B 4.20
+In TSV %8 Vo""c/ﬂ} (4.20)
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where w$({) = wo(t({)) and - V,"® < { <0. For { =0, the final values of { and w§, can

be easily obtained.
wylr) = E[ ; —ct - (1 +% Vo) c"“],

For é =1 we get
Blc c
=Ly — -V, 4.21
L e BVO In 1+ﬁ 0 ( )

5. PERTURBED MOTION

The total displacements in the perturbed motion are expressed by the following
functions

u=u($,0,1), v=0,(4,0,1), w=wot) + wp(g, 6, 1). ;.1

Accounting for (5.1) in eqns (2.3) leads to the expressions:
fomé + 1 (04, — z (9%, au,
¢ L] a¢ (4 a¢2 a¢
z ( 1 0%, 1 dv

+l L%, L tidctgd~w,)—— + 2
4=6 sm¢ 79 T8 “a'\sin’¢ 96° " sing 60
+ctg¢

¢ 2 +4,ctg ¢> (5.2)

1 (o5, 1 o4 z{ 1 &*, cos¢dw,
=lw=7 (a¢ tmgan o® 4’) P (sin¢a¢68 Y

1 U 1 04
+ sin ¢ 55 o¢ (sm’d») + 2sin ¢ —0-5’)

From eqns (3.3) and (5.2) the stress components are obtained,

C.[ou z3a [ow, Co | 1 (0o,
=eHy [a¢ a¢(¢+ )]* {sm¢( +“°°s‘”)

1 d fow ow c, .
z[sm’d;ae( +v,sm¢) (a¢’+“)°t8¢]} th (53)
C 1 dv, 04, z
o on=gi g (905 + % e ) i

W,

< 2°‘8¢a"”+za¢ao aae —v,cos ¢ +sin¢ ¢)]

wherex =1,2 or ¢, 8, ¥ =3 — « and C, is given by (4.5),

i35 0E) ]
e

i
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The stress components (5.3) produce, according to (2.7), the following resultant forces and
moments:

du C ov,
N, =N+ Cw, + C, “q;,+smv¢( +u cosgb)

Co 0o, O,
Noo=Nog =52 ¢( d)%-&-—u—vcosd)), (5.5)
R 8 (o, 13 (oW,
M = — 120{C%<a¢9+u’)+c[snﬁb@()( +vsm¢)
+ctg¢< ¢”+u>]}

G ow, 0w, ou,
Mw—-Mg,,—mm(—thg +26¢66 69 vcos¢+sm¢a¢)

Eliminating shear forces from eqns (2.4), neglecting the terms with products of
perturbation quantities and accounting for the sixth equation being satisfied identically,
the dynamic equilibrium equations can be reduced to the form

ON, ,
acos (N, — N9)+asm¢————+a—-——“ cos¢(M¢,—M,,)—»sin¢aM" %

EX) o6 00
% s
- 0 : -
[6(;569 smqb( 3% ):]Na +a‘sin P, =0,
ON, oM, &M,
2acos¢N9¢+asm¢—é—$—+a—-—+cos¢(M4,9 My,y) +sin ¢ 6(1:9 —56-”
| sing (L0} 4+ 2 N0+ Py=0, 5.6
5¢2+ 66 S +atsin Py = {5.6)

. *M,
Sln¢ a(N¢+Ng) M¢+Mg+ a¢

2
]+cos¢a¢ My~ Ma)+(ctg¢ag 65)68)

1 M, .
ind 067 “sing o (a¢ “)N"

o( 1 ow ow 0 . 2. _
+[86(sm¢66+v)+cos¢(6¢ u)]No +a*singP,=0.

On substituting (5.5) into (5.6) and accounting for (4.6), the three governing equations of
the viscoplastic flow buckling are obtained. These partial differential equations of the fifth
order with variable coefficients can be expressed in the form

X (Mg — M) +

Ty(u?)+ Ty(a)) +aPf =0 (5.7

where j = 1,2, 3 is the summation index, u,' = u,, u,> =0, u,’ =w,, P?is given by (2.6),
i=1,2,30r ¢, 0, z and T, denote the followmg dlﬁ‘erennal operators

o O

W,
Tn=—-3C0-a-°, le—o sz"'-3cn 54’
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e L
Ty=0, Tp=-3C a’ Ty= 3C° a sin ¢ a6’

Wo w, 1 0 W
T31=—3Coa(°t8¢+ ¢) T”""”"'f&ﬁ%’ T33=-3C0—‘-13l72,

T,=C, p? G 2 ! -91
n=C(-~ctg’¢ + )+ +sm 74362 )

_ ctgg 0 G _0 _6_
Ta==G sm¢60+2 n¢< ‘8¢ d¢p ) 00’
ov? i) 0
_ k2 58
Ta=(55 +235)+ G 69

~ ctgp 9 G 0
2'=C°smd>69 25m¢( cigé + ¢)

c, @
=30~ 2y
(1 ctg'¢ +77) 2sm¢602’
.G, [ov _o\. G @
Tz’—sin¢<35+260)+sin¢60’

2

~ 02 0
Ty = —EC,[%%+ctg¢w+%+(3+0t82¢)°t8¢

Jctg ¢ 82
My el L a¢

. & az+3t¢62 _3+ctg2¢_a__c,i
2 sin 06 o908 sing 08/ singdl’
¢

Ty = —EC,P} P+ 1)+ (2 — &V?)
and

0? 1 @ h?

Vi=ggitete ¢a¢ st 86”12

The terms h%/12a® occurring in the first and the second equation of (5.7) have been
disregarded as much smaller than unity.

In order to obtain the solution in terms of the spherical functions, the eqns (5.7) will
be transformed into the corresponding form. Differentiating the first of eqns (5.7), (i = 1)
with respect to 6, multiplying the second (i = 2) by —sin ¢ and next differentiating it with
respect to ¢, and adding them together we eventually find, introducing a new variable

~—t
H= pr T v, ctg ¢ (59)
that

Cof .. W .
-f(L#—G-fﬂ>+a(qu-Ph#)=0 (5.10)
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where

4
Sk { St LI - p2
q’“”sinqﬁ 0 30 gfcige, L=V+2 (5.11)

A similar operation will be made on the same equations in the next step. Multiplying the
first equation by sin ¢ and differentiating it with respect to ¢, differentiating the second
with respect to 6, adding them together and dividing the result by sin ¢, we obtain

CL[ + (L = 2)w,] + Gl + (L — 2)w,} ~ 3Co% n +(L — 2)w,} + alg, — phij) =0

(5.12)
where
ou, 1 oy,
i —_—F 5.1
n 3 +u,ctg¢ +sin¢38’ (5.13)
aqs 1 @
q,,=-———£ +gfctgd +o— ¢-—-§5P . (5.14)

The third equation (5.7), (i = 3) expressed in terms of unknown functions u, 7 and w, has -
the form

—EC.L[N + (L = 2w,] = Gl + (L — Dw,]

- 3c,,§9 [+ (L = 2w, +a(g? — ph,)=0.  (5.15)

The set of equations (5.10), (5.12) and (5.15) can be reduced to the ordinary differential
equations by taking the following series:

4 _ 23 [u,..(t)g{’_,_'" V() M
47 Somolah() d¢  qn() sind

v © & _,_u“(t) m m —Um(!')gim_ .
q:’=.,}.:o...z.:o[ ab) g T g0 ]smm@, G160

b % g el

q:P = nmdm=0 q:m(t)

P,,"‘] cos mb, (5.16a)

P, cosmf (5.16¢)

where P,"(cos ¢) are the associated Legendre polynomials of degree n and orde;i m.
Substituting (5.16) into (5.9) + (5.15) and accounting for LP" = -—J,If,,", LLP = AP
where 2, = n(n + 1) — 2, leads to the following equations for the amplitudes u,, (1), D)
and w,,(¢):

. VTGl o L e%, N _ a0 I=0 5.17)
vm+m[2(lvm+6av,.,) aq,,.,] ) (

ap

Wy — .-13 [().,, +2)(Cy = AFC Yt + ECy + 2)(Cs = 34C, )W + 2CsHime+ Ik +2)
ap

x -‘f} Colilpg + Wom) + aq;,] =0. (5.17¢)
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From the general case given by eqns (5.7) the two special cases can be obtained. The
equation of the unperturbed motion (4.7) will remain the same in each case. Differences
will only occur in the perturbed motion.

Axisymmetrical buckling mode. In this case the total displacements in the perturbed
motion are described by the functions: u = u,(¢, 1), v = v,, w = wy(t) + w,(¢, t). Equations
of the perturbed motion can be obtained from the general equations by putting v, =0,
9/88 =0, m = 0. The governing equations of the viscoplastic flow buckling reduce to the
two equations obtained from eqns (5.12) and (5.15). The equations for the amplitudes u,(),
w,(t) reduce to eqns (5.17b) and (5.17c). This means that the values of n for this special
and the general case are the same. This case of buckling mode was considered for 6 = 1
in [12].

The general case described by the functions (5.1) may be considerably simplified by
assuming: u = u,=0,v =v,=0, w = wo(t) + w,(¢, 6, ¢). In such a situation the governing
equation of the viscoplastic flow buckling and the equation for the amplitude w,,()
obtained from eqns (5.15) and (5.17¢) have the form

[6C.L(L — 2) + Cy(EL — D)W, + 3c.,% (L —2)w,—a(g? — phw,)=0,  (5.18)

Wy — ;—:;’—’ [(E(l,, +2)(C; — 4,C)) + 2C5)Wp + 3(4, + 2) 1;9 CoWon + aq,‘,,] =0 (5.19)
where w, and ¢,” are given by (5.16¢).

Returning to the fundamental equations of the amplitudes, we see that the set (5.17)
is separated into two subsets. The coefficients of these equations are functions of time and
are determined by the solution for the unperturbed motion. However, this solution is given
in the parametric form and it turns out to be impossible to obtain the effective analytical
solution of eqns (5.17). The solution of these equations for given initial conditions can be
obtained by numerical integration.

Bearing in mind the form of the solution (5.16), the initial conditions for the
perturbations must also be expressed in series.

Let us consider a shell loaded by an impulse pressure uniformly applied to the surface
and directed radially and inwards. Thus, practically, unavoidable perturbations are
represented by ¢ # 0, ¢,° = g/ =0, (¢4, = g%, = 0) and the following sets of initial values
for eqns (5.17) may be assumed:

For loading by the rectangular impulse

U0 =0, v,,(00=0, w,,(0)=a,,=ah,
Up(0) =0, U,,(0)=0, w,,(0)=0. (5.20)
For loading by the ideal impulse, (¢, = 0)
unl(o) = 0’ v,,,,(O) =0, wm(o) =y = a-h;
Um(0)=0, ,,0)=0, w,(0)=0b,, =05V, (5.21)
where 4 and 6 are constants. For ¢Z,(¢) the relation g2, = c,,, = éQ is assumed where ¢ is

a constant. For the initial conditions (5.20) or (5.21) we obtain from eqn (5.17a) v,,, =0
and the functions (5.16) reduce, for the definite m and »n, to the form

Uy = Upy (1) d_?;,%___:’sm cos mb,
m . .
U= —Upy(t) e P,"(cos ¢) sin mb, (5.22)

W, = W,,(t)P,"(cos ¢) cos m6.
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It is worth noting that the solution of eqns (5.17) obtained for an even n and m # |
is also valid for the spherical half-dome, Fig. 2 with the following boundary conditions:

n n 1
XI(E’H’I)’Ov u(-iseyt)":g, U(Epea t):"—()a

1 oM
Ot iin ¢ aew = 1N = :Noola0.0 = 0 (5.23)

where x, = (4 + Ow/d¢)/a, x,=[v + (sin ¢ )~'0w/88}/a denote the angles of rotations of
the tangents to the meridional and circumferential circles and Ny, Ny, My, and Q, are
given by (5.5) and by the fifth equation of (2.4), respectively.

6. NUMERICAL RESULTS AND DISCUSSION

The equation of unperturbed motion and the equations of amplitudes have been solved
numerically employing the Merson procedure. The spherical shell was loaded uniformly
by an ideal pressure impulse and kept at a given temperature. The shell thickness was
assumed to be 3 mm and its radius 100 mm. The shell was made of mild steel 1015 with
the following material data: g, = 206.9 MPa, y* =y /\/5 =4045"' (f =288K), 6 = 5and
p = 7.78 Mg/m’>. The results are also obtained for the linear yieid law, § = 1.

Some of the numerical computations are presented diagrammatically. In Figs. 3 and
4 a substantial influence of the material constant 6 and the temperature & on the magnitude
of unperturbed radial displacement is shown. In Figs. 5-8 the amplitudes of perturbed
displacements w,,, 4., are given as functions of 1, 8, §, n and ¥,. The perturbation
coefficients were assumed as constants, d = b = 0.01. Again, a pronounced influence of
these parameters is readily observed. The solution of eqns (5.17) is indicated by solid line,
the solution of eqn (5.19), accounting for the radial displacement w,,, only, by broken line.
In Fig. 9 the shape of buckled shell is given at ¢ = #,= 36.9 us. It is seen that the u, is many
times smaller than w,; it is the growth of normal displacement that mainly causes the
instability of the shell. In Fig. 8 the variation of the w,,(t,) is shown as a function of the
impulse applied, V,. The numbers at the dots distributed along the curves denote the
critical modes. The function w,,(t;) is monotonously increasing and the absence of

14} wo dmm}
4=5, §:=600 K
12k
o= cm
h'=3 mm
L T=404 Vs
. W 5o mes 4-5.6:288 K
4:1,8:600 K
! qz o8
i
~C 06
1@ '
!
J 04t
Fig. 2
2 $:1,8:288 K
0.2F
. ) . . , bles]

0 ) 20 30 40 50 60
Fig. 3.

Fig. 2. Spherical half-dome, boundary conditions.

Fig. 3. Unperturbed displacements w, vs time.
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Fig. 4. Unperturbed final displacements wg(f) vs impuise V,.
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Fig. 5. Time variation of amplitudes of displacement w,,,.

extremum makes it impossible to accurately determine the critical impulse. In this type of
buckling the loss of stability is not quite instantaneous, the process needs the increment
of loading and some time to develop. The maximum amplitudes w,,(#,) reach large values
in a certain narrow interval of the impulse variation. Hence it is natural to determine the
approximate threshold value of the impulse graphically as the abcissa of such a point on
the curve at which a small increment of the pulse begins to produce considerable
increments of the defiection amplitude.

In the analysis the elastic strains are neglected. The amplitudes of perturbed viscoplastic
flow are restricted to be small compared with the radial displacement so the unloading does
not occur, [, > 0. Accounting for the meridional displacement, Figs. 5 and 6 leads to an
increase in the radial displacement. This increase is small and is found to diminish the
critical impulse.
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Fig. 6. Amplitudes of final perturbed displacement w,(f,) vs number of half-waves n.
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Fig. 7. Amplitudes of final perturbed displacement uma(ty) vs number of half-waves .
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Fig. 8. Maximum amplitudes of perturbed displacement w,, (1) and the mode numbers n vs applied

impulse ¥,
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Fig. 9. Perturbed final displacements w, and u,.

The nonlinearity of the function @ (F) as well as elevated temperature and the initial
imperfections of the geometry and loading are the main factors which cause a considerable
decrease of the buckling resistance of the shell.
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